
CommandLineApp Documentation
Release 3.0.7

Doug Hellmann

July 20, 2012

CONTENTS

i

ii

CommandLineApp Documentation, Release 3.0.7

Contents:

CONTENTS 1

CommandLineApp Documentation, Release 3.0.7

2 CONTENTS

CHAPTER

ONE

COMMANDLINEAPP – COMMAND LINE
APPLICATION BUILDER

1.1 Application Base Class

3

CommandLineApp Documentation, Release 3.0.7

4 Chapter 1. commandlineapp – Command line application builder

CHAPTER

TWO

COMMAND LINE PROGRAMS ARE
CLASSES, TOO!

Note: This article was originally published in the November 2007 issue of Python Magazine. It has been updated to
match the more recent versions of CommandLineApp.

Most OOP discussions focus on GUI or domain-specific development areas, completely ignoring the workhorse of
computing: command line programs. This article examines CommandLineApp, a base class for creating command
line programs as objects, with option and argument validation, help text generation, and more.

Although many of the hot new development topics are centered on web technologies like AJAX, regular command
line programs are still an important part of most systems. Many system administration tasks still depend on command
line programs, for example. Often, a problem is simple enough that there is no reason to build a graphical or web user
interface when a straightforward command line interface will do the job. Command line programs are less glamorous
than programs with fancy graphics, but they are still the workhorses of modern computing.

The Python standard library includes two modules for working with command line options. The getopt module
presents an API that has been in use for decades on some platforms and is commonly available in many programming
languages, from C to bash. The optparse module is more modern than getopt, and offers features such as type
validation, callbacks, and automatic help generation. Both modules elect to use a procedural-style interface, though,
and as a result neither has direct support for treating your command line application as a first class object. There is
no facility for sharing common options between related programs using getopt. And, while it is possible to reuse
optparse.OptionParser instances in different programs, it is not as natural as inheritance.

CommandLineApp is a base class for command line programs. It handles the repetitive aspects of interacting with
the user on the command line such as parsing options and arguments, generating help messages, error handling, and
printing status messages. To create your application, just make a subclass of CommandLineApp and concentrate on
your own code. All of the information about switches, arguments, and help text necessary for your program to run is
derived through introspection. Common options and behavior can be shared by applications through inheritance.

2.1 csvcat Requirements

Recently, I needed to combine data from a few different sources, including a database and a spreadsheet, to summarize
the results. I wanted to import the merged data into a spreadsheet where I could perform the analysis. All of the sources
were able to save data to comma-separated-value (CSV) files; the challenge was merging the files together. Using the
csv module in the Python standard library, and CommandLineApp, I wrote a small program to read multiple CSV
files and concatenate them into a single output file. The program, csvcat, is a good illustration of how to create
applications with CommandLineApp.

5

http://www.pythonmagazine.com/
http://www.doughellmann.com/projects/CommandLineApp/
http://www.doughellmann.com/projects/csvcat/

CommandLineApp Documentation, Release 3.0.7

The requirements for csvcat were fairly simple. It needed to read one or more CSV files and combine them, without
repeating the column headers that appeared in each input source. In some cases, the input data included columns I
did not want, so I needed to be able to select the columns to include in the output. No sort feature was needed, since
I was going to import it into a spreadsheet when I was done and I could sort the data after importing it. To make the
program more generally useful, I also included the ability to select the output format using a csv module feature called
“dialects”.

2.2 Analyzing the Help

Listing 1 shows the help output for the final version of csvcat, produced by running csvcat --help. Listing 2
shows the source for the program. All of the information in the help output is derived from the csvcat class through
introspection. The help text follows a fairly standard layout. It begins with a description of the application, followed
by increasingly more detailed descriptions of the syntax, arguments, and options. Application-specific help such as
examples and argument ranges appears at the end.

2.2.1 Listing 1

$ python docs/source/PyMagArticle/Listing2.py --help
Concatenate comma separated value files.

SYNTAX:

csvcat [<options>] filename [filename...]

-c col[,col...], --columns=col[,col...]
-d name, --dialect=name
--debug
-h
--help
--quiet
--skip-headers
-v
--verbose=level

ARGUMENTS:

The names of comma separated value files, such as might be
exported from a spreadsheet or database program.

OPTIONS:

-c col[,col...], --columns=col[,col...]
Limit the output to the specified columns. Columns are
identified by number, starting with 0.

-d name, --dialect=name
Specify the output dialect name. Defaults to "excel".

--debug
Set debug mode to see tracebacks.

6 Chapter 2. Command line programs are classes, too!

CommandLineApp Documentation, Release 3.0.7

-h
Displays abbreviated help message.

--help
Displays verbose help message.

--quiet
Turn on quiet mode.

--skip-headers
Treat the first line of each file as a header, and only
include one copy in the output.

-v
Increment the verbose level.

Higher levels are more verbose. The default is 1.

--verbose=level
Set the verbose level.

EXAMPLES:

To concatenate 2 files, including all columns and headers:

$ csvcat file1.csv file2.csv

To concatenate 2 files, skipping the headers in the second file:

$ csvcat --skip-headers file1.csv file2.csv

To concatenate 2 files, including only the first and third columns:

$ csvcat --col 0,2 file1.csv file2.csv

2.2.2 Listing 2

1 #!/usr/bin/env python
2 """Concatenate csv files.
3 """
4

5 import csv
6 import sys
7 import commandlineapp
8

9 class csvcat(commandlineapp.CommandLineApp):
10 """Concatenate comma separated value files.
11 """
12

13 _app_name = ’csvcat’
14

15 EXAMPLES_DESCRIPTION = ’’’
16 To concatenate 2 files, including all columns and headers:
17

18 $ csvcat file1.csv file2.csv
19

2.2. Analyzing the Help 7

CommandLineApp Documentation, Release 3.0.7

20 To concatenate 2 files, skipping the headers in the second file:
21

22 $ csvcat --skip-headers file1.csv file2.csv
23

24 To concatenate 2 files, including only the first and third columns:
25

26 $ csvcat --col 0,2 file1.csv file2.csv
27 ’’’
28

29 def showVerboseHelp(self):
30 commandlineapp.CommandLineApp.showVerboseHelp(self)
31 print
32 print ’OUTPUT DIALECTS:’
33 print
34 for name in csv.list_dialects():
35 print ’\t%s’ % name
36 print
37 return
38

39 skip_headers = False
40 def option_handler_skip_headers(self):
41 """Treat the first line of each file as a header,
42 and only include one copy in the output.
43 """
44 self.skip_headers = True
45 return
46

47 dialect = "excel"
48 def option_handler_dialect(self, name):
49 """Specify the output dialect name.
50 Defaults to "excel".
51 """
52 self.dialect = name
53 return
54 option_handler_d = option_handler_dialect
55

56 columns = []
57 def option_handler_columns(self, *col):
58 """Limit the output to the specified columns.
59 Columns are identified by number, starting with 0.
60 """
61 self.columns.extend([int(c) for c in col])
62 return
63 option_handler_c = option_handler_columns
64

65 def getPrintableColumns(self, row):
66 """Return only the part of the row which should be printed.
67 """
68 if not self.columns:
69 return row
70

71 # Extract the column values, in the order specified.
72 response = ()
73 for c in self.columns:
74 response += (row[c],)
75 return response
76

77 def getWriter(self):

8 Chapter 2. Command line programs are classes, too!

CommandLineApp Documentation, Release 3.0.7

78 return csv.writer(sys.stdout, dialect=self.dialect)
79

80 def main(self, *filename):
81 """
82 The names of comma separated value files, such as might be
83 exported from a spreadsheet or database program.
84 """
85 headers_written = False
86

87 writer = self.getWriter()
88

89 # process the files in order
90 for name in filename:
91 f = open(name, ’rt’)
92 try:
93 reader = csv.reader(f)
94

95 if self.skip_headers:
96 if not headers_written:
97 # This row must include the headers for the output
98 headers = reader.next()
99 writer.writerow(self.getPrintableColumns(headers))

100 headers_written = True
101 else:
102 # We have seen headers before, and are skipping,
103 # so do not write the first row of this file.
104 ignore = reader.next()
105

106 # Process the rest of the file
107 for row in reader:
108 writer.writerow(self.getPrintableColumns(row))
109 finally:
110 f.close()
111 return
112

113 if __name__ == ’__main__’:
114 csvcat().run()

The program description is taken from the docstring of the csvcat class. Before it is printed, the text is split into
paragraphs and reformatted using textwrap, to ensure that it is no wider than 80 columns of text.

The program description is followed by a syntax summary for the program. The options listed in the
syntax section correspond to methods with names that begin with option_handler_. For example,
option_handler_skip_headers() indicates that csvcat should accept a --skip-headers option on the
command line.

The names of any non-optional arguments to the program appear in the syntax summary. In this case, csvcat needs the
names of the files containing the input data. At least one file name is necessary, and multiple names can be given, as
indicated by the fact that the filename argument to main() uses the variable argument notation: *filename. A
longer description of the arguments, taken from the docstring of the main() method (lines 79-82), follows the syntax
summary. As with the general program summary, the description of the arguments is reformatted with textwrap to fit
the screen.

2.2. Analyzing the Help 9

CommandLineApp Documentation, Release 3.0.7

2.3 Options and Their Arguments

Following the argument description is a detailed explanation of all of the options to the program. CommandLineApp
examines each option handler method to build the option description, including the name of the option, alternative
names for the same option, and the name and description of any arguments the option accepts. There are three
variations of option handlers, based on the arguments used by the option.

The simplest kind of option does not take an argument at all, and is used as a “switch” to turn a feature on or off.
The method option_handler_skip_headers (lines 38-43) is an example of such a switch. The method takes
no argument, so CommandLineApp recognizes that the option being defined does not take an argument either. To
create the option name, the prefix is stripped from the method name, and the underscore is converted to a dash (-);
option_handler_skip_headers becomes --skip-headers.

Other options accept a single argument. For example, the --dialect option requires the name of the CSV output
dialect. The method option_handler_dialect (lines 46-51) takes one argument, called name. The suggested
syntax for the option, as seen in Listing 1, is --dialect=name. The name of the method’s argument is used as the
name of the argument to the option in the help text.

The -d option has the same meaning as --dialect, because option_handler_d is an alias for
option_handler_dialect. CommandLineApp recognizes aliases, and combines the forms in the documenta-
tion so the alternative forms -d name and --dialect=name are described together.

It is often useful for an option to take multiple arguments, as with --columns. The user could repeat the op-
tion on the command line, but it is more compact to allow them to list multiple values in one argument list. When
CommandLineApp sees an option handler method that takes a variable argument list, it treats the corresponding
option as accepting a list of arguments. When the option appears on the command line, the string argument is split on
any commas and the resulting list of strings is passed to the option handler method.

For example, option_handler_columns (lines 55-60) takes a variable length argument named col. The option
--columns can be followed by several column numbers, separated by commas. The option handler is called with the
list of values pre-parsed. In the syntax description, the argument is shown repeating: --columns=col[,col...].

For all cases, the docstring from the option handler method serves as the help text for the option. The text of the
docstring is reformatted using textwrap so both the code and help output are easy to read without extra effort on the
part of the developer.

2.4 Application-specific Detailed Help

The general syntax and option description information is produced in the same way for all CommandLineApp pro-
grams. There are times when an application needs to include additional information in the help output, though, and
there are two ways to add such information.

The first way is by providing examples of how to use the program on the command line. Although it is optional,
including examples of how to apply different combinations of arguments to your program to achieve various results
enhances the usefulness of the help as a reference manual. When the EXAMPLES_DESCRIPTION class attribute is
set, it is used as the source for the examples. Unlike the other documentation strings, the EXAMPLES_DESCRIPTION
is printed directly without being reformatted. This preserves the indentation and other formatting of the examples, so
the user sees an accurate representation of the program’s inputs and outputs.

Occasionally, a program may need to include information in its help output which cannot be statically defined in a
docstring or derived by CommandLineApp. At the very end of its help, csvcat includes a list of available CSV
dialects which can be used with the --dialect option. Since the list of dialects must be constructed at runtime
based on what dialects have been registered with the csv module, csvcat overrides showVerboseHelp() to print
the list itself (lines 27-35).

10 Chapter 2. Command line programs are classes, too!

CommandLineApp Documentation, Release 3.0.7

2.5 Using csvcat

The inputs to csvcat are any number of CSV files, and the output is CSV data printed to standard output. To test csvcat
during development, I created two small files with test data. Each file contains three columns of data: a number, a
string, and a date.

$ cat testdata1.csv
"Title 1","Title 2","Title 3"
1,"a",08/18/07
2,"b",08/19/07
3,"c",08/20/07

The second file does not include quotes around any of the string fields. I chose to include this variation because csvcat
does not quote its output, so using unquoted test data simulates re-processing the output of csvcat.

$ cat testdata2.csv
Title 1,Title 2,Title 3
40,D,08/21/07
50,E,08/22/07
60,F,08/23/07

The simplest use of csvcat is to print the contents of an input file to standard output. Notice that the output does not
include quotes around the string fields.

$ csvcat testdata1.csv
Title 1,Title 2,Title 3
1,a,08/18/07
2,b,08/19/07
3,c,08/20/07

It is also possible to select which columns should be included in the output using the --columns option. Columns
are identified by their number, beginning with 0. Column numbers can be listed in any order, so it is possible to reorder
the columns of the input data, if needed.

$ csvcat --columns 2,0 testdata1.csv
Title 3,Title 1
08/18/07,1
08/19/07,2
08/20/07,3

Switching to tab-separated columns instead of comma-separated is easily accomplished by using the --dialect
option. There are only two dialects available by default, but the the csv module API supports registering additional
dialects.

$ csvcat --dialect excel-tab testdata1.csv
Title 1 Title 2 Title 3
1 a 08/18/07
2 b 08/19/07
3 c 08/20/07

For my project, there were input files with several columns, but only two of them needed to be included in the output.
Each file had a single row of column headers. I only wanted one set of headers in the output, so the headers from
subsequent files needed to be skipped. And the output had to be in a format I could import into a spreadsheet, for
which the default “excel” dialect worked fine. The data was merged with a command like this:

$ csvcat --skip-headers --columns 2,0 testdata1.csv testdata2.csv
Title 3,Title 1
08/18/07,1
08/19/07,2

2.5. Using csvcat 11

CommandLineApp Documentation, Release 3.0.7

08/20/07,3
08/21/07,40
08/22/07,50
08/23/07,60

2.6 Running a CommandLineApp Program

Most of the work for csvcat is being done in the main() method. To invoke the application, however, the caller
does not invoke main() directly. The program should be started by calling run(), so the options are validated
and exceptions from main() are handled. The run() method is one of several methods that are not intended to be
overridden by derived classes, since they implement the core features of a command line program. The source for
CommandLineApp appears in Listing 3.

2.6.1 Listing 3

1 #!/usr/bin/env python
2 # -*- coding: utf-8 -*-
3 #
4 # Copyright 2007 Doug Hellmann.
5 #
6 #
7 # All Rights Reserved
8 #
9 # Permission to use, copy, modify, and distribute this software and

10 # its documentation for any purpose and without fee is hereby
11 # granted, provided that the above copyright notice appear in all
12 # copies and that both that copyright notice and this permission
13 # notice appear in supporting documentation, and that the name of Doug
14 # Hellmann not be used in advertising or publicity pertaining to
15 # distribution of the software without specific, written prior
16 # permission.
17 #
18 # DOUG HELLMANN DISCLAIMS ALL WARRANTIES WITH REGARD TO THIS SOFTWARE,
19 # INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS, IN
20 # NO EVENT SHALL DOUG HELLMANN BE LIABLE FOR ANY SPECIAL, INDIRECT OR
21 # CONSEQUENTIAL DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS
22 # OF USE, DATA OR PROFITS, WHETHER IN AN ACTION OF CONTRACT,
23 # NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN
24 # CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
25 #
26

27 """Base class for building command line applications.
28

29 :class:‘CommandLineApp‘ makes creating command line applications as
30 simple as defining callbacks to handle options when they appear in
31 ‘‘sys.argv‘‘.
32 """
33

34 #
35 # Import system modules
36 #
37 import getopt
38 import inspect
39 import os

12 Chapter 2. Command line programs are classes, too!

CommandLineApp Documentation, Release 3.0.7

40 try:
41 from cStringIO import StringIO
42 except:
43 from StringIO import StringIO
44 import sys
45 import textwrap
46

47 #
48 # Import Local modules
49 #
50

51 #
52 # Module
53 #
54

55 class OptionDef(object):
56 """Definition for a command line option.
57

58 Attributes:
59

60 method_name - The name of the option handler method.
61 option_name - The name of the option.
62 switch - Switch to be used on the command line.
63 arg_name - The name of the argument to the option handler.
64 is_variable - Is the argument expected to be a sequence?
65 default - The default value of the option handler argument.
66 help - Help text for the option.
67 is_long - Is the option a long value (--) or short (-)?
68 """
69

70 # Option handler method names start with this value
71 OPTION_HANDLER_PREFIX = ’option_handler_’
72

73 # For *args arguments to option handlers, how to split the argument values
74 SPLIT_PARAM_CHAR = ’,’
75

76 def __init__(self, method_name, method):
77 self.method_name = method_name
78 self.option_name = method_name[len(self.OPTION_HANDLER_PREFIX):]
79 self.is_long = len(self.option_name) > 1
80

81 self.switch_base = self.option_name.replace(’_’, ’-’)
82 if len(self.switch_base) == 1:
83 self.switch = ’-’ + self.switch_base
84 else:
85 self.switch = ’--’ + self.switch_base
86

87 argspec = inspect.getargspec(method)
88

89 self.is_variable = False
90 args = argspec[0]
91 if len(args) > 1:
92 self.arg_name = args[-1]
93 elif argspec[1]:
94 self.arg_name = argspec[1]
95 self.is_variable = True
96 else:
97 self.arg_name = None

2.6. Running a CommandLineApp Program 13

CommandLineApp Documentation, Release 3.0.7

98

99 if argspec[3]:
100 self.default = argspec[3][0]
101 else:
102 self.default = None
103

104 self.help = inspect.getdoc(method)
105 return
106

107 def get_switch_text(self):
108 """Return the description of the option switch.
109

110 For example: --switch=arg or -s arg or --switch=arg[,arg]
111 """
112 parts = [self.switch]
113 if self.arg_name:
114 if self.is_long:
115 parts.append(’=’)
116 else:
117 parts.append(’ ’)
118 parts.append(self.arg_name)
119 if self.is_variable:
120 parts.append(’[%s%s...]’ % (self.SPLIT_PARAM_CHAR, self.arg_name))
121 return ’’.join(parts)
122

123

124 def invoke(self, app, arg):
125 """Invoke the option handler.
126 """
127 method = getattr(app, self.method_name)
128 if self.arg_name:
129 if self.is_variable:
130 opt_args = arg.split(self.SPLIT_PARAM_CHAR)
131 method(*opt_args)
132 else:
133 method(arg)
134 else:
135 method()
136 return
137

138

139 class CommandLineApp(object):
140 """Base class for building command line applications.
141

142 Define a docstring for the class to explain what the program does.
143

144 Include descriptions of the command arguments in the docstring for
145 ‘‘main()‘‘.
146

147 When the ‘‘EXAMPLES_DESCRIPTION‘‘ class attribute is not empty, it
148 will be printed last in the help message when the user asks for
149 help.
150 """
151

152 EXAMPLES_DESCRIPTION = ’’
153

154 # If true, always ends run() with sys.exit()
155 force_exit = True

14 Chapter 2. Command line programs are classes, too!

CommandLineApp Documentation, Release 3.0.7

156

157 # The name of this application
158 _app_name = os.path.basename(sys.argv[0])
159

160 _app_version = None
161

162 def __init__(self, command_line_options=None):
163 "Initialize CommandLineApp."
164 if command_line_options is None:
165 command_line_options = sys.argv[1:]
166 self.command_line_options = command_line_options
167 self.before_options_hook()
168 self.supported_options = self.scan_for_options()
169 self.after_options_hook()
170 return
171

172 def before_options_hook(self):
173 """Hook to initialize the app before the options are processed.
174

175 Overriding __init__() requires special handling to make sure the
176 arguments are still passed to the base class. Override this method
177 instead to create local attributes or do other initialization before
178 the command line options are processed.
179 """
180 return
181

182 def after_options_hook(self):
183 """Hook to initialize the app after the options are processed.
184

185 Overriding __init__() requires special handling to make sure the
186 arguments are still passed to the base class. Override this method
187 instead to create local attributes or do other initialization after
188 the command line options are processed.
189 """
190 return
191

192 def main(self, *args):
193 """Main body of your application.
194

195 This is the main portion of the app, and is run after all of
196 the arguments are processed. Override this method to implment
197 the primary processing section of your application.
198 """
199 pass
200

201 def handle_interrupt(self):
202 """Called when the program is interrupted via Control-C
203 or SIGINT. Returns exit code.
204 """
205 sys.stderr.write(’Canceled by user.\n’)
206 return 1
207

208 def handle_main_exception(self, err):
209 """Invoked when there is an error in the main() method.
210 """
211 if self.debugging:
212 import traceback
213 traceback.print_exc()

2.6. Running a CommandLineApp Program 15

CommandLineApp Documentation, Release 3.0.7

214 else:
215 self.error_message(str(err))
216 return 1
217

218 ## HELP
219

220 def show_help(self, error_message=None):
221 "Display help message when error occurs."
222 print
223 if self._app_version:
224 print ’%s version %s’ % (self._app_name, self._app_version)
225 else:
226 print self._app_name
227 print
228

229 #
230 # If they made a syntax mistake, just
231 # show them how to use the program. Otherwise,
232 # show the full help message.
233 #
234 if error_message:
235 print ’’
236 print ’ERROR: ’, error_message
237 print ’’
238 print ’’
239 print ’%s\n’ % self._app_name
240 print ’’
241

242 txt = self.get_simple_syntax_help_string()
243 print txt
244 print ’For more details, use --help.’
245 print
246 return
247

248 def show_verbose_help(self):
249 "Display the full help text for the command."
250 txt = self.get_verbose_syntax_help_string()
251 print txt
252 return
253

254 ## STATUS MESSAGES
255

256 def _status_message(self, msg, output):
257 if isinstance(msg, unicode):
258 to_print = msg.encode(’ascii’, ’replace’)
259 else:
260 to_print = unicode(msg, ’utf-8’).encode(’ascii’, ’replace’)
261 output.write(to_print)
262 return
263

264 def status_message(self, msg=’’, verbose_level=1, error=False, newline=True):
265 """Print a status message to output.
266

267 msg
268 The status message string to be printed.
269 verbose_level
270 The verbose level to use. The message
271 will only be printed if the current verbose

16 Chapter 2. Command line programs are classes, too!

CommandLineApp Documentation, Release 3.0.7

272 level is >= this number.
273 error
274 If true, the message is considered an error and
275 printed as such.
276 newline
277 If true, print a newline after the message.
278

279 """
280 if self.verbose_level >= verbose_level:
281 if error:
282 output = sys.stderr
283 else:
284 output = sys.stdout
285 self._status_message(msg, output)
286 if newline:
287 output.write(’\n’)
288 # some log mechanisms don’t have a flush method
289 if hasattr(output, ’flush’):
290 output.flush()
291 return
292

293 def error_message(self, msg=’’):
294 ’Print a message as an error.’
295 self.status_message(’ERROR: %s\n’ % msg, verbose_level=0, error=True)
296 return
297

298 ## DEFAULT OPTIONS
299

300 debugging = False
301 def option_handler_debug(self):
302 "Set debug mode to see tracebacks."
303 self.debugging = True
304 return
305

306 _run_main = True
307 def option_handler_h(self):
308 "Displays abbreviated help message."
309 self.show_help()
310 self._run_main = False
311 return
312

313 def option_handler_help(self):
314 "Displays verbose help message."
315 self.show_verbose_help()
316 self._run_main = False
317 return
318

319 def option_handler_quiet(self):
320 ’Turn on quiet mode.’
321 self.verbose_level = 0
322 return
323

324 verbose_level = 1
325 def option_handler_v(self):
326 """Increment the verbose level.
327

328 Higher levels are more verbose.
329 The default is 1.

2.6. Running a CommandLineApp Program 17

CommandLineApp Documentation, Release 3.0.7

330 """
331 self.verbose_level = self.verbose_level + 1
332 self.status_message(’New verbose level is %d’ % self.verbose_level,
333 3)
334 return
335

336 def option_handler_verbose(self, level=1):
337 """Set the verbose level.
338 """
339 self.verbose_level = int(level)
340 self.status_message(’New verbose level is %d’ % self.verbose_level,
341 3)
342 return
343

344 ## INTERNALS (Subclasses should not need to override these methods)
345

346 def run(self):
347 """Entry point.
348

349 Process options and execute callback functions as needed.
350 This method should not need to be overridden, if the main()
351 method is defined.
352 """
353 # Process the options supported and given
354 options = {}
355 for info in self.supported_options:
356 options[info.switch] = info
357 parsed_options, remaining_args = self.call_getopt(self.command_line_options,
358 self.supported_options)
359 exit_code = 0
360 try:
361 for switch, option_value in parsed_options:
362 opt_def = options[switch]
363 opt_def.invoke(self, option_value)
364

365 # Perform the primary action for this application,
366 # unless one of the options has disabled it.
367 if self._run_main:
368 main_args = tuple(remaining_args)
369

370 # We could just call main() and catch a TypeError,
371 # but that would not let us differentiate between
372 # application errors and a case where the user
373 # has not passed us enough arguments. So, we check
374 # the argument count ourself.
375 num_args_ok = False
376 argspec = inspect.getargspec(self.main)
377 defaults = argspec[3]
378 # Arguments with defaults are not required, so subtract them
379 expected_arg_count = len(argspec[0]) - 1 - len(defaults or [])
380

381 if argspec[1] is not None:
382 num_args_ok = True
383 if len(argspec[0]) > 1:
384 num_args_ok = (len(main_args) >= expected_arg_count)
385 elif len(main_args) == expected_arg_count:
386 num_args_ok = True
387

18 Chapter 2. Command line programs are classes, too!

CommandLineApp Documentation, Release 3.0.7

388 if num_args_ok:
389 exit_code = self.main(*main_args)
390 else:
391 self.show_help(’Incorrect arguments.’)
392 exit_code = 1
393

394 except KeyboardInterrupt:
395 exit_code = self.handle_interrupt()
396

397 except SystemExit, msg:
398 exit_code = msg.args[0]
399

400 except Exception, err:
401 exit_code = self.handle_main_exception(err)
402

403 if self.force_exit:
404 sys.exit(exit_code)
405 return exit_code
406

407 def scan_for_options(self):
408 "Scan through the inheritence hierarchy to find option handlers."
409 options = []
410

411 methods = inspect.getmembers(self.__class__, inspect.ismethod)
412 for method_name, method in methods:
413 if method_name.startswith(OptionDef.OPTION_HANDLER_PREFIX):
414 options.append(OptionDef(method_name, method))
415

416 return options
417

418 def call_getopt(self, command_line_options, supported_options):
419 "Parse the command line options."
420 short_options = []
421 long_options = []
422 for o in supported_options:
423 if len(o.option_name) == 1:
424 short_options.append(o.option_name)
425 if o.arg_name:
426 short_options.append(’:’)
427 elif o.arg_name:
428 long_options.append(’%s=’ % o.switch_base)
429 else:
430 long_options.append(o.switch_base)
431

432 short_option_string = ’’.join(short_options)
433

434 try:
435 parsed_options, remaining_args = getopt.getopt(
436 command_line_options,
437 short_option_string,
438 long_options)
439 except getopt.error, message:
440 self.show_help(message)
441 if self.force_exit:
442 sys.exit(1)
443 raise
444 return (parsed_options, remaining_args)
445

2.6. Running a CommandLineApp Program 19

CommandLineApp Documentation, Release 3.0.7

446 def _group_option_aliases(self):
447 """Return a sequence of tuples containing
448 (option_names, option_defs)
449 """
450 # Figure out which options are aliases
451 option_aliases = {}
452 for option in self.supported_options:
453 method = getattr(self, option.method_name)
454 existing_aliases = option_aliases.setdefault(method, [])
455 existing_aliases.append(option)
456

457 # Sort the groups in order
458 grouped_options = []
459 for options in option_aliases.values():
460 names = [o.option_name for o in options]
461 grouped_options.append((names, options))
462 grouped_options.sort()
463 return grouped_options
464

465 def _get_option_identifier_text(self, options):
466 """Return the option identifier text.
467

468 For example:
469

470 -h
471

472 -v, --verbose
473

474 -f bar, --foo bar
475 """
476 option_texts = []
477 for option in options:
478 option_texts.append(option.get_switch_text())
479 return ’, ’.join(option_texts)
480

481 def get_arguments_syntax_string(self):
482 """Look at the arguments to main to see what the program accepts,
483 and build a syntax string explaining how to pass those arguments.
484 """
485 syntax_parts = []
486 argspec = inspect.getargspec(self.main)
487 args = argspec[0]
488 if len(args) > 1:
489 for arg in args[1:]:
490 syntax_parts.append(arg)
491 if argspec[1]:
492 syntax_parts.append(argspec[1])
493 syntax_parts.append(’[’ + argspec[1] + ’...]’)
494 syntax = ’ ’.join(syntax_parts)
495 return syntax
496

497 def get_simple_syntax_help_string(self):
498 """Return syntax statement.
499

500 Return a simplified form of help including only the
501 syntax of the command.
502 """
503 buffer = StringIO()

20 Chapter 2. Command line programs are classes, too!

CommandLineApp Documentation, Release 3.0.7

504

505 # Show the name of the command and basic syntax.
506 buffer.write(’%s [<options>] %s\n\n’ % \
507 (self._app_name, self.get_arguments_syntax_string())
508)
509

510 grouped_options = self._group_option_aliases()
511

512 # Assemble the text for the options
513 for names, options in grouped_options:
514 buffer.write(’ %s\n’ % self._get_option_identifier_text(options))
515

516 return buffer.getvalue()
517

518 def _format_help_text(self, text, prefix):
519 if not text:
520 return ’’
521 buffer = StringIO()
522 text = textwrap.dedent(text)
523 for para in text.split(’\n\n’):
524 formatted_para = textwrap.fill(para,
525 initial_indent=prefix,
526 subsequent_indent=prefix,
527)
528 buffer.write(formatted_para)
529 buffer.write(’\n\n’)
530 return buffer.getvalue()
531

532 def get_verbose_syntax_help_string(self):
533 """Return the full description of the options and arguments.
534

535 Show a full description of the options and arguments to the
536 command in something like UNIX man page format. This includes
537

538 - a description of each option and argument, taken from the
539 __doc__ string for the option_handler method for
540 the option
541

542 - a description of what additional arguments will be processed,
543 taken from the arguments to main()
544

545 """
546 buffer = StringIO()
547

548 class_help_text = self._format_help_text(inspect.getdoc(self.__class__),
549 ’’)
550 buffer.write(class_help_text)
551

552 buffer.write(’\nSYNTAX:\n\n ’)
553 buffer.write(self.get_simple_syntax_help_string())
554

555 main_help_text = self._format_help_text(inspect.getdoc(self.main), ’ ’)
556 if main_help_text:
557 buffer.write(’\n\nARGUMENTS:\n\n’)
558 buffer.write(main_help_text)
559

560 buffer.write(’\nOPTIONS:\n\n’)
561

2.6. Running a CommandLineApp Program 21

CommandLineApp Documentation, Release 3.0.7

562 grouped_options = self._group_option_aliases()
563

564 # Describe all options, grouping aliases together
565 for names, options in grouped_options:
566 buffer.write(’ %s\n’ % self._get_option_identifier_text(options))
567

568 help = self._format_help_text(options[0].help, ’ ’)
569 buffer.write(help)
570

571 if self.EXAMPLES_DESCRIPTION:
572 buffer.write(’EXAMPLES:\n\n’)
573 buffer.write(self.EXAMPLES_DESCRIPTION)
574 return buffer.getvalue()
575

576

577 if __name__ == ’__main__’:
578 CommandLineApp().run()

The available and supported options are examined when the instance is initialized. By default, the contents of
sys.argv are used as the options and arguments passed in from the command line to the program. It is easy to pass a
different list of options when writing automated tests for your program, by passing a list of strings to __init__() as
command_line_options. The options supported by the program are determined by scanning the class for option
handler methods. No options are actually evaluated until run() is called.

When the program is run, the first thing it does is use getopt to validate the options it has been given. In
callGetopt(), the arguments needed by getopt are constructed based on the option handlers discovered for the
class. Options are processed in the order they are passed on the command line, and the option handler method for each
option encountered is called. When an option handler requires an argument that is not provided on the command line,
getopt detects the error. When an argument is provided, the option handler is responsible for determining whether the
value is the correct type or otherwise valid. When the argument is not valid, the option handler can raise an exception
with an error message to be printed for the user.

After all of the options are handled, the remaining arguments to the program are checked to be sure there are enough to
satisfy the requirements, based on the argspec of the main() function. The number of arguments is checked explicitly
to avoid having to handle a TypeError if the user does not pass the right number of arguments on the command line.
If CommandLineApp depended on catching a TypeError when it passed too few arguments to main(), it could
not tell the difference between a coding error and a user error. If a mistake inside main() caused a TypeError to
occur, it might look like the user had passed an incorrect number of arguments to the program.

2.7 Error Handling

When an exception is raised during option processing or inside main(), the exception is caught by one of the except
clauses and given to an error handling method. Subclasses can change the error handling behavior by overriding these
methods.

KeyboardInterrupt exceptions are handled by calling handleInterrupt(). The default behavior is to print
a message that the program has been interrupted and cause the program to exit with an error code. A subclass could
override the method to clean up an in-progress task, background thread, or other operation which otherwise might not
be automatically stopped when the KeyboardInterrupt is received.

When a lower level library tries to exit the program, SystemExit may be raised. CommandLineApp traps the
SystemExit exception and exits normally, using the exit status taken from the exception. If the force_exit
attribute of the application is false, run() returns instead of exiting. Trapping attempts to exit makes it easier to
integrate CommandLineApp programs with unittest or other testing frameworks. The test can instantiate the

22 Chapter 2. Command line programs are classes, too!

CommandLineApp Documentation, Release 3.0.7

application, set force_exit to a false value, then run it. If any errors occur, a status code is returned but the test
process does not exit.

All other types of exceptions are handled by calling handleMainException() and passing the exception as an
argument. The default implementation of handleMainException() (lines 62-70) prints a simple error message
based on the exception, unless debugging mode is turned on. Debugging mode prints the entire traceback for the
exception.

$ csvcat file_does_not_exist.csv
ERROR: [Errno 2] No such file or directory:
’file_does_not_exist.csv’

2.8 Option Definitions

The standard library module inspect provides functions for performing introspection operations on classes and objects
at runtime. The API supports basic querying and type checking so it is possible, for example, to get a list of the
methods of a class, including all inherited methods.

CommandLineApp.scan_for_options() uses inspect to scan an application class for option handler methods.
All of the methods of the class are retrieved with inspect.getmembers(), and those whose name starts with
option_handler_ are added to the list of supported options. Since most command line options use dashes instead
of underscores, but method names cannot contain dashes, the underscores in the option handler method names are
converted to dashes when creating the option name.

The __init__() method of the OptionDef class does all of the work of determining the command line
switch name and what type of arguments the switch takes. The option handler method is examined with
inspect.getargspec(), and the result is used to initialize the OptionDef.

An “argspec” for a function is a tuple made up of four values: a list of the names of all regular arguments to the
function, including self if the function is a method; the name of the argument to receive the variable argument
values, if any; the name of the argument to receive the keyword arguments, if any; and a list of the default values for
the arguments, in they order they appear in the list of option names.

The argspecs for the option handlers in csvcat illustrate the variations of interest to OptionDef. First,
option_handler_skip_headers:

1 >>> import Listing2
2 >>> import inspect
3 >>> print inspect.getargspec(
4 ... Listing2.csvcat.option_handler_skip_headers)
5 ([’self’], None, None, None)

Since the only positional argument to the method is self, and there is no variable argument name given, the option
handler is treated as a simple command line switch without any arguments.

The option_handler_dialect, on the other hand, does include an additional argument:

>>> print inspect.getargspec(
... Listing2.csvcat.option_handler_dialect)
([’self’, ’name’], None, None, None)

The name argument is listed in the argspec as a single regular argument. The result, when a program is run, is that
while the options are being processed by CommandLineApp and OptionDef, the value for name is passed directly
to the option handler method.

The option_handler_columns method illustrates variable argument handling:

2.8. Option Definitions 23

CommandLineApp Documentation, Release 3.0.7

>>> print inspect.getargspec(
... Listing2.csvcat.option_handler_columns)
([’self’], ’col’, None, None)

The col argument from option_handler_columns is named in the argspec as the variable argument identifier.
Since option_handler_columns accepts variable arguments, the OptionDef splits the argument value into a list
of strings, and the list is passed to the option handler method using the variable argument syntax.

The other variable argument configuration, using unidentified keyword arguments, does not make sense for an option
handler. The user of the command line program has no standard way to specify named arguments to options, so they
are not supported by OptionDef.

2.9 Status Messages

In addition to command line option and argument parsing, and error handling, CommandLineApp provides a “sta-
tus message” interface for giving varying levels of feedback to the user. Status messages are printed by calling
self.status_message(). Each message must indicate the verbose level setting at which the message should
be printed. If the current verbose level is at or higher than the desired level, the message is printed. Otherwise, it
is ignored. The -v, --verbose, and --quiet flags let the user control the verbose_level setting for the
application, and are defined in the CommandLineApp so that all subclasses inherit them.

2.9.1 Listing 4

1 #!/usr/bin/env python
2 # Illustrate verbose level controls.
3

4 import commandlineapp
5

6 class verbose_app(commandlineapp.CommandLineApp):
7 "Demonstrate verbose level controls."
8

9 def main(self):
10 for i in range(1, 10):
11 self.status_message(’Level %d’ % i, i)
12 return 0
13

14 if __name__ == ’__main__’:
15 verbose_app().run()

Listing 4 contains another sample application which uses status_message() to illustrate how the verbose level
setting is applied. The default verbose level is 1, so when the program is run without any additional arguments only a
single message is printed:

$ python Listing4.py
Level 1
$

The --quiet option silences all status messages by setting the verbose level to 0:

$ python Listing4.py --quiet
$

Using the -v option increases the verbose setting, one level at a time. The option can be repeated on the command
line:

24 Chapter 2. Command line programs are classes, too!

CommandLineApp Documentation, Release 3.0.7

$ python Listing4.py -v
Level 1
Level 2
$ python Listing4.py -vv
New verbose level is 3
Level 1
Level 2
Level 3
$

And the --verbose option sets the verbose level directly to the desired value:

$ python Listing4.py --verbose 4
New verbose level is 4
Level 1
Level 2
Level 3
Level 4
$

Error messages can be printed to the standard error stream using the error_message() method. The message is
prefixed with the word “ERROR”, and error messages are always printed, no matter what verbose level is set. Most
programs will not need to use errorMessage() directly, because raising an exception is sufficient to have an error
message displayed for the user.

2.10 CommandLineApp and Inheritance

When creating a suite of related programs, it is usually desirable for all of the programs to use the same options and, in
many cases, share other common behavior. For example, when working with a database the connection and transaction
must be managed reliably. Rather than re-implementing the same database handling code in each program, by using
CommandLineApp, you can create an intermediate base class for your programs and share a single implementation.
Listing 5 includes a skeleton base class called SQLiteAppBase for working with an sqlite3 database in this way.

2.10.1 Listing 5

1 #!/usr/bin/env
2 # Base class for sqlite programs.
3

4 import sqlite3
5 import commandlineapp
6

7 class SQLiteAppBase(commandlineapp.CommandLineApp):
8 """Base class for accessing sqlite databases.
9 """

10

11 dbname = ’sqlite.db’
12 def optionHandler_db(self, name):
13 """Specify the database filename.
14 Defaults to ’sqlite.db’.
15 """
16 self.dbname = name
17 return
18

19 def main(self):

2.10. CommandLineApp and Inheritance 25

CommandLineApp Documentation, Release 3.0.7

20 # Subclasses can override this to control the arguments
21 # used by the program.
22 self.db_connection = sqlite3.connect(self.dbname)
23 try:
24 self.cursor = self.db_connection.cursor()
25 exit_code = self.takeAction()
26 except:
27 # throw away changes
28 self.db_connection.rollback()
29 raise
30 else:
31 # save changes
32 self.db_connection.commit()
33 return exit_code
34

35 def takeAction(self):
36 """Override this in the actual application.
37 Return the exit code for the application
38 if no exception is raised.
39 """
40 raise NotImplementedError(’Not implemented!’)
41

42 if __name__ == ’__main__’:
43 SQLiteAppBase().run()

SQLiteAppBase defines a single option handler for the --db option to let the user choose the database file. The
default database is a file in the current directory called “sqlite.db”. The main() method establishes a connection
to the database, opens a cursor for working with the connection, then calls takeAction() to do the work. When
takeAction() raises an exception, all database changes it may have made are discarded and the transaction is
rolled back. When there is no error, the transaction is committed and the changes are saved.

2.10.2 Listing 6

1 #!/usr/bin/env python
2 # Initialize the database
3

4 import time
5 from Listing5 import SQLiteAppBase
6

7 class initdb(SQLiteAppBase):
8 """Initialize a database.
9 """

10

11 def takeAction(self):
12 self.statusMessage(’Initializing database %s’ % self.dbname)
13 # Create the table
14 self.cursor.execute("CREATE TABLE log (date text, message text)")
15 # Log the actions taken
16 self.cursor.execute(
17 "INSERT INTO log (date, message) VALUES (?, ?)",
18 (time.ctime(), ’Created database’))
19 self.cursor.execute(
20 "INSERT INTO log (date, message) VALUES (?, ?)",
21 (time.ctime(), ’Created log table’))
22 return 0
23

26 Chapter 2. Command line programs are classes, too!

CommandLineApp Documentation, Release 3.0.7

24 if __name__ == ’__main__’:
25 initdb().run()

A subclass of SQLiteAppBase can override takeAction() to do some actual work using the database con-
nection and cursor created in main(). Listing 6 contains one such program, called initdb. In initdb, the
takeAction() method creates a “log” table using the database cursor established in the base class. It then inserts
two rows into the new table, using the same cursor. There is no need for initdb to commit the transaction, since the
base class will do that after takeAction() returns without raising an exception.

$ python Listing6.py
Initializing database sqlite.db

2.10.3 Listing 7

1 #!/usr/bin/env python
2 # Initialize the database
3

4 from Listing5 import SQLiteAppBase
5

6 class showlog(SQLiteAppBase):
7 """Show the contents of the log.
8 """
9

10 substring = None
11 def optionHandler_message(self, substring):
12 """Look for messages with the substring.
13 """
14 self.substring = substring
15 return
16

17 def takeAction(self):
18 if self.substring:
19 pattern = ’%’ + self.substring + ’%’
20 c = self.cursor.execute(
21 "SELECT * FROM log WHERE message LIKE ?;",
22 (pattern,))
23 else:
24 c = self.cursor.execute("SELECT * FROM log;")
25

26 for row in c:
27 print ’%-30s %s’ % row
28 return 0
29

30 if __name__ == ’__main__’:
31 showlog().run()

The showlog program in Listing 7 also uses SQLiteAppBase. It reads records from the log table and prints them
out to the screen. When no options are given, it uses the cursor opened by the base class to find all of the records in
the “log” table, and print them:

$ python Listing7.py
Sat Aug 25 19:09:41 2007 Created database
Sat Aug 25 19:09:41 2007 Created log table

The --message option to showlog can be used to filter the output to include only records whose message column
matches the pattern given. When a message substring is specified, the select statement is altered to include only

2.10. CommandLineApp and Inheritance 27

CommandLineApp Documentation, Release 3.0.7

messages containing the substring. In this example, only log messages with the word “table” in the message are
printed:

$ python Listing7.py --message table
Sat Aug 25 19:09:41 2007 Created log table

The updatelog program in Listing 8 inserts new records into the database. Each time updatelog is called, the
message passed on the command line is saved as an instance attribute by main() so it can be used later when a new
row is inserted into the log table by takeAction().

2.10.4 Listing 8

1 #!/usr/bin/env python
2 # Initialize the database
3

4 import time
5 from Listing5 import SQLiteAppBase
6

7 class updatelog(SQLiteAppBase):
8 """Add to the contents of the log.
9 """

10

11 def main(self, message):
12 """Provide the new message to add to the log.
13 """
14 # Save the message for use in takeAction()
15 self.message = message
16 return SQLiteAppBase.main(self)
17

18 def takeAction(self):
19 self.cursor.execute(
20 "INSERT INTO log (date, message) VALUES (?, ?)",
21 (time.ctime(), self.message))
22 return 0
23

24 if __name__ == ’__main__’:
25 updatelog().run()

$ python Listing8.py "another new message"
$ python Listing7.py
Sat Aug 25 19:09:41 2007 Created database
Sat Aug 25 19:09:41 2007 Created log table
Sat Aug 25 19:10:29 2007 another new message

As with initdb, because the base class commits changes to the database after takeAction() returns,
updatelog does not need to manage the database connection in any way. Since all of the example programs use
the database connection and cursor created by their base class, they could be updated to use a Postgresql or MySQL
database by modifying the base class, without having to make those changes to each program separately.

2.11 Future Work

I have been using CommandLineApp in my own work for several years now, and continue to find ways to enhance
it. The two primary features I would still like to add are the ability to print the help for a command in formats other
than plain text, and automatic type conversion for arguments.

28 Chapter 2. Command line programs are classes, too!

CommandLineApp Documentation, Release 3.0.7

It is difficult to prepare attractive printed documentation from plain text help output like what is produced by the
current version of CommandLineApp. Parsing the text output directly is not necessarily straightforward, since the
embedded help may contain characters or patterns that would confuse a simple parser. A better solution is to use the
option data gathered by introspection to generate output in a format such as DocBook, which could then be converted
to PDF or HTML using other tool sets specifically designed for that purpose. There is a prototype of a program to
create DocBook output from an application class, but it is not robust enough to be released - yet.

CommandLineApp is based on the older option parsing module, getopt, rather than the new optparse. This means
it does not support some of the newer features available in optparse, such as type conversion for arguments. Type
conversion could be added to CommandLineApp by inferring the types from default values for arguments. The
OptionDef already discovers default values, but they are not used. The OptionDef.invoke() method needs to
be updated to look at the default for an option before calling the option handler. If the default is a type object, it can
be used to convert the incoming argument. If the default is a regular object, the type of the object can be determined
using type(). Then, once the type is known, the argument can be converted.

2.11.1 Conclusion

I hope this article encourages you to think about your command line programs in a different light, and to treat them as
first class objects. Using inheritance to share code is so common in other areas of development that it is hardly given
a second thought in most cases. As has been shown with the SQLiteAppBase programs, the same technique can be
just as powerful when applied to building command line programs, saving development time and testing effort as a
result. CommandLineApp has been used as the foundation for dozens of types of programs, and could be just what
you need the next time you have to write a new command line program.

2.11. Future Work 29

CommandLineApp Documentation, Release 3.0.7

30 Chapter 2. Command line programs are classes, too!

CHAPTER

THREE

HISTORY

3.0.7

• Repackage the documentation

3.0.6

• Bug fix from Cezary Statkiewicz for handling default arguments.

3.0.5

• Fixed packaging problems that prevented installation with easy_install and pip.

3.0.4

• Switched to sphinx for documentation.

3.0.3

• Updated the build to work with Mercurial and migrated the source to bitbucket host. No code changes.

3.0.2

• source file encoding patch from Ben Finney

3.0.1

• replace the test script missing from the 3.0 release

3.0

• Ben Finney provided a patch to convert the names of the module, method, etc. to be PEP8-compliant.
Thanks, Ben!

These changes are obviously backwards incompatible.

2.6

• Add initialization hooks to make application setup easier without overriding __init__().

2.5

• Updated to handle Unicode status messages more reliably.

2.4

• Code clean up and error handling changes.

2.3

• Refine help output a little more.

2.2

31

http://benfinney.id.au/

CommandLineApp Documentation, Release 3.0.7

• Handle missing docstrings for main() and the class.

2.1

• Add automatic detection and validation of main function arguments, including help text generation. Also
includes the main function docstring in --help output.

2.0

• Substantial rewrite using inspect and with modified API.

1.0

• This is the old version, which was developed with and works under Python 1.5.4-2.5.

32 Chapter 3. History

CHAPTER

FOUR

INDICES AND TABLES

• genindex

• modindex

• search

33

